
 z

Full Length Research Paper

IMPLEMENTATION OF MODIFIED DISTRIBUTED CANNY EDGE DETECTOR ALGORITHM
USING FPGA

*
Poonam S. Deokar

and Anagha P. Khedkar

M.E Student, MCEORC, Nashik, India

*Corresponding Author

Received 13th July 2015; Published 31st August 2015

Abstract

Edge can be defined as discontinuities in image intensity from one pixel to another. Edge detection is one of the most fundamental
algorithms in digital image processing. Direct implementation of the canny algorithm has high latency and cannot be employed in real-
time applications. To overcome these, an adaptive threshold selection algorithm is proposed. Distributed Canny Edge Detection using
FPGA has high edge detection performance, but has high resource utilization. Here, to reduce the resource utilization we present
modified distributed canny edge detection algorithm which uses approximate square root method. This algorithm divides the image into
blocks and computes edges of the blocks in parallel. It is capable of removing excess edges in the image. Subjective test shows that
performance of proposed algorithm is better than previous algorithm. Finally, it is implemented on Virtex-4 FPGA and synthesized using
Xilinx ISE. The synthesized image uses 4 computation engines and obtains nearly 30% resource optimization in approximate calculation.
To detect edges images from SIPI database are used.

Keywords: FPGA, Canny Edge Detector, Latency, Threshold.

Copyright © Poonam S. Deokar and Anagha P. Khedka . This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To cite this paper: Poonam S. Deokar and Anagha P. Khedkar 2015. “Implementation of modified distributed canny edge detector algorithm
using fpga”, International Journal of Information Research and Review. Vol. 2, Issue, 08, pp. 999-1003. August, 2015.

INTRODUCTION

An edge of an image is jump in intensity. An ideal edge is the
set of connected pixels each of which is located at an
orthogonal step transition in grey level. The basic purpose of
edge detection is to significantly reduce the amount of data in
an image, while preserving the structural properties to be used
for further image processing. Edge detection has been widely
applied in various different computer vision systems. It is used
to identify changes in luminosity of the image, changes in the
intensity due to changes in scene structure. Using software,
Edge detection algorithms are implemented, and their hardware
acceleration is possible with Very Large Scale Integration
(VLSI) technology, for real-time applications (Christos
Gentsos, 2010). The Canny edge detector has better
performance than previous algorithms. Canny edge detection
algorithm is also known as the optimal edge detector (Wenhao
He and KuiYuan, 2008). Canny's intentions were to enhance
the many edge detectors in the image. Implementation of
Canny algorithm with hardware has high latency and cannot be
employed in real-time applications (Christos Gentsos, 2010).
Another shortcoming of the commonly used Canny algorithm
is that the computational cost of the algorithm is very high and
it cannot be implemented in real time to meet the needs of
mobile robot vision system.

Canny algorithm uses statistical analysis of complete image to
calculate threshold values and it uses same high and low
threshold value for entire image, which leads to some extra
edges. For Canny algorithm performance can be improved by
using self adaptive threshold calculation. In Distributed Canny
algorithm, It divides image into different blocks and calculates
threshold values for each block separately. All block can run in
parallel, so reduces latency problem to some extent. But,
Resource utilization increases accordingly. To overcome these
shortcomings of this algorithm, a new approach is proposed in
this paper, which computes the approximate value of gradient.

Approximate calculation reduces the cost of design as well as
resource utilization is also optimized to great extent. Proposed
algorithm is tested on the various images to analyze the
performance of the algorithm. From the detail study of further
literature survey, it has been identified that the performance of
distributed Canny edge detector can be enhanced by using
optimization algorithms viz. Genetic algorithm (GA) for
resource optimization as well as for designing adaptive
threshold. In addition to conventional GA, the novel GA
operators viz. Basic twin operator, advanced twin operator may
be incorporated to get better optimization results at reduced
computational costs (Anagha Parag Khedkar, 2009; Anagha

ISSN: 2349-9141

 Available online at http://www.ijirr.com

International Journal of Information Research and Review
Vol. 2, Issue, 08, pp. 999-1003, August, 2015

OPEN ACCESS JOURNAL

Parag Khedkar and Dr. Shaila Subbaraman
Parag Khedkar and Dr. Shaila Subbaraman, 2010
Khedkar and Dr. Shaila Subbaraman, 2010).

Canny Edge Detection

The block diagram of the canny edge detection algorithm is
shown in Fig. The Canny algorithm (Canny Edge Detection,
2009) consists of the following steps:

 Smoothing the input image.
 Calculating the horizontal gradient Gx and vertical gradient

Gy at each pixel location.
 Computing the gradient magnitude G and direction θG at

each pixel location.
 Applying Non-Maximal Suppression (NMS) to thin edges.
 Computing high and low thresholds based on the histogram

of the gradient magnitude for the entire im
 Performing hysteresis Thresholding.

Smoothing: Smoothing of the image is achieved by median
filter to remove noise.

Calculation of Gx and Gy: It is performed using the Sobel
Operator. The Sobel operator uses a pair of 3x3 convolution
masks, one estimating the gradient in the x-direction (columns)
and the other estimating the gradient in the y-

Gradients and direction calculation:
absolute gradient magnitude (edge strength) at each point can
be found by the formula which is simpler to calculate
compared to the equation of exact gradient magnitude.
Exact formula is given by,

Approximate calculation can be done by,

G(approximate)= 15\16 * max(Gx,Gy) + 0.4* min(Gx,Gy).

The formula for finding the edge direction is given below:

theta = invtan (Gy / Gx)

 Fig. 1. Block Diagram of the Canny Edge Detection Algorithm

 1000 Poonam S. Deokar and Anagha P. Khedkar,

Parag Khedkar and Dr. Shaila Subbaraman, 2010; Anagha
2010Anagha Parag

The block diagram of the canny edge detection algorithm is
Canny Edge Detection,

Calculating the horizontal gradient Gx and vertical gradient

Computing the gradient magnitude G and direction θG at

Maximal Suppression (NMS) to thin edges.
Computing high and low thresholds based on the histogram
of the gradient magnitude for the entire image.

Smoothing of the image is achieved by median

It is performed using the Sobel
Operator. The Sobel operator uses a pair of 3x3 convolution

direction (columns)
-direction (rows).

: The approximate
absolute gradient magnitude (edge strength) at each point can
be found by the formula which is simpler to calculate
compared to the equation of exact gradient magnitude.

16 * max(Gx,Gy) + 0.4* min(Gx,Gy).

The formula for finding the edge direction is given below:

Non-Maximal Suppression: Once the direction of the gradient
is known, the pixel that has no local maximum
magnitude is eliminated. If the pixel’s gradient direction is one
of 8 possible main directions the gradient magnitude of this
pixel is compared with two of its immediate neighbors along
the gradient direction and the gradient
if it does not correspond to a local maximum. ng gradients.

Threshold Calculation: The high threshold is computed such
that a percentage p1 of total pixel in the image would be
classified as Strong edge. The high threshold corresponds to
the point at which value of gradient magnitude is Cumulative
distributive function (CDF) equals to 1
is calculated as percentage p2 of high threshold.

Hysteresis Threshold: If the gradient magnitude of pixel is
greater than high threshold th
strong edge.
If the gradient magnitude of pixel is between high and low
threshold then this pixel is considered as weak edge. Hysteresis
used to determine the edge map.

Distributed Canny Edge Detection

The Canny edge detection algorithm operates on the whole
image and has a latency that is proportional to the size of the
image. While performing the original canny algorithm at the
block-level would speed up the operations, it would result in
loss of significant edges in high
edges in texture regions. Natural images consist of a mix of
smooth regions, texture regions and high
such a mix of regions may not be available locally in every
block of the entire image. In
distributed canny edge detection algorithm is proposed, which
removes the inherent dependency between the various blocks
so that the image can be divided into blocks and each block can
be processed in parallel.

In the distributed version of the Canny algorithm
Gentsos, 2010; QianXu and Lina J. Karam, 2014
image is divided into m × n overlapping blocks, and the blocks
are processed independent of each other. To prevent edge
artifacts and loss of edges at the boundaries, adjacent blocks
overlap by (L-1)/2 pixels for L× L gradient mask. However, for
each block, only edges in the central n × n (where n= m
non-overlapping region are included in the final edge map.

Block Diagram of the Canny Edge Detection Algorithm

and Anagha P. Khedkar, Implementation of modified distributed canny edge detector Algorithm using FPGA

Once the direction of the gradient
is known, the pixel that has no local maximum gradient
magnitude is eliminated. If the pixel’s gradient direction is one
of 8 possible main directions the gradient magnitude of this
pixel is compared with two of its immediate neighbors along
the gradient direction and the gradient magnitude is set to zero
if it does not correspond to a local maximum. ng gradients.

The high threshold is computed such
that a percentage p1 of total pixel in the image would be
classified as Strong edge. The high threshold corresponds to

at which value of gradient magnitude is Cumulative
distributive function (CDF) equals to 1- p1. The low threshold
is calculated as percentage p2 of high threshold.

If the gradient magnitude of pixel is
greater than high threshold then this pixel is considered as

If the gradient magnitude of pixel is between high and low
threshold then this pixel is considered as weak edge. Hysteresis
used to determine the edge map.

Distributed Canny Edge Detection

The Canny edge detection algorithm operates on the whole
image and has a latency that is proportional to the size of the
image. While performing the original canny algorithm at the

level would speed up the operations, it would result in
ficant edges in high-detailed regions and excessive

edges in texture regions. Natural images consist of a mix of
smooth regions, texture regions and high-detailed regions and
such a mix of regions may not be available locally in every

mage. In (Christos Gentsos, 2010),
distributed canny edge detection algorithm is proposed, which
removes the inherent dependency between the various blocks
so that the image can be divided into blocks and each block can

stributed version of the Canny algorithm (Christos
QianXu and Lina J. Karam, 2014), the input

image is divided into m × n overlapping blocks, and the blocks
are processed independent of each other. To prevent edge

at the boundaries, adjacent blocks
pixels for L× L gradient mask. However, for

each block, only edges in the central n × n (where n= m-L+1)
overlapping region are included in the final edge map.

Implementation of modified distributed canny edge detector Algorithm using FPGA

 In the proposed algorithm, Steps 1 to 3 and Steps 5 to 7 are the
same as in the original canny algorithm except that these are
now applied at the block level.

The high and low gradient threshold selection step of the
original Canny (Step 4) is modified to enable block
processing. Analysis of natural images showed that a pixel with
a gradient magnitude of 4 corresponds to a psycho
significant edge. Also, a pixel with a gradient magnitude of 2
and 6 corresponds to blurred edges and
respectively. The proposed threshold selection algorithm was
designed based on these observations and is as shown below:

 Calculating the horizontal gradient Gxand vertical gradient
Gyat each pixel location by convolving with gradient
masks.

 Computing the gradient magnitude G and direction θ
each pixel location.

 Applying Non-Maximal Suppression (NMS) to thin edges.
 Parallel block-level processing without degrading the edge

detection performance.
 Performing hysteresis thresh holding to de

map.

Fig. 2. Structure of m x m overlapping block

Natural images consist of a mix of smooth regions, texture
regions and high-detailed regions and such a mix of regions
may not be available locally in every block of the entire image.
The input image is divided into m×m overlapping blocks. The
adjacent blocks overlap by (L − 1)/2 pixels for a L × L gradient
mask.

Modified Distributed Canny Edge Detection Algorithm
Using Fpga

The system for implementing the Distributed canny edge
detection algorithm based on an FPGA platform.

Fig. 3. Distributed

 1001 International Journal of Information Research and Review

In the proposed algorithm, Steps 1 to 3 and Steps 5 to 7 are the
same as in the original canny algorithm except that these are

The high and low gradient threshold selection step of the
to enable block-level

processing. Analysis of natural images showed that a pixel with
a gradient magnitude of 4 corresponds to a psycho-visually
significant edge. Also, a pixel with a gradient magnitude of 2

 very sharp edges,
respectively. The proposed threshold selection algorithm was
designed based on these observations and is as shown below:

and vertical gradient
at each pixel location by convolving with gradient

Computing the gradient magnitude G and direction θGat

Maximal Suppression (NMS) to thin edges.
level processing without degrading the edge

Performing hysteresis thresh holding to determine the edge

Structure of m x m overlapping block

Natural images consist of a mix of smooth regions, texture
detailed regions and such a mix of regions

may not be available locally in every block of the entire image.
The input image is divided into m×m overlapping blocks. The

− 1)/2 pixels for a L × L gradient

Modified Distributed Canny Edge Detection Algorithm

The system for implementing the Distributed canny edge
detection algorithm based on an FPGA platform.

Our FPGA Architecture design follows the exact procedure of
the Canny algorithm, therefore our implementation has 5
blocks (Canny Edge Detection, 2009

• Smoothing
• Sobel Gradient calculation
• Non Maximum Suppression
• Thresholding
• Hysteresis

Smoothing

The digital image is first smoothened using median filter to
remove noise. In this implementation 3x3 image matrix is used
to achieve parallel filtering. Median filtering with FPGA needs
3 line FIFO ,6 D-type Flip-flops with controller.

Fig. 4. Median Filtering

Sobel Gradient Calculations

To calculate horizontal and vertical gradient 3x3 image matrix
is multiplied with the Sobel operator.

Fig. 5. Image matrix and mask

To implement horizontal and vertical gradient blocks in FPGA
(Canny Edge Detection, 2009)
Multiplier, Comparator. Input to this blocks are image pixels.

Distributed Canny Edge Detection Algorithm Block Diagram

International Journal of Information Research and Review Vol. 2, Issue, 08, pp.999-1003, August

Our FPGA Architecture design follows the exact procedure of
the Canny algorithm, therefore our implementation has 5

Canny Edge Detection, 2009)

mum Suppression

The digital image is first smoothened using median filter to
remove noise. In this implementation 3x3 image matrix is used
to achieve parallel filtering. Median filtering with FPGA needs

flops with controller.

Fig. 4. Median Filtering

To calculate horizontal and vertical gradient 3x3 image matrix
is multiplied with the Sobel operator.

Fig. 5. Image matrix and mask

horizontal and vertical gradient blocks in FPGA
Canny Edge Detection, 2009), we require Adder, Subtractor,

Multiplier, Comparator. Input to this blocks are image pixels.

August, 2015

Output of this comparator is used to calculate the
magnitude. It calculates approximate root value. FPGA
hardware requires multiplier, comparator to calculate the
gradient value.
Exact formula is given by,

Approximate calculation can be done by,

G(approximate)= 15\16 * max(Gx,Gy) + 0.4* min(

Non-Maximal Suppression

The formula for finding the edge direction is given below:
theta = invtan (Gy / Gx)

Horizontal and vertical gradient magnitudes are fetched from
memory and used as input to NMS unit.

It computes gradient direction at each pixel. Gradient
magnitudes of gradient magnitudes of four nearest neighbors
along the direction are selected to compute two intermediate
gradients. Gradient magnitudes of four nearest neighbors along
the direction are selected to compute two intermediate
gradients. The final gradient magnitude after directional NMS
(marked as Mag_NMS (x, y) is stored back into local memory
and used as the input for the hysteresis thresholding unit.

Block Classification

Block classification unit divides image into different blocks
such as smooth, edge/texture, uniform, strong edge and
medium edge block. It consists of two parts: 1) pixel classifier,
2) block classifier. Input to block classification unit is image
blocks. Pixel classification, the local variance of each pixel is
utilized and the variance is calculated as follows:

Var = 1/8

Where,

Xi =value of the current pixel
Xm =mean of the 3 X 3 template of pixel.

The pixels in the 3×3 windows are fetched from the local
memory and stored in one FIFO buffer to compute the local
variance. Then, the local variance is compared with T
(Threshold Values: Tu =Upper Threshold, Te=Lower
Threshold) [17] in order to determine pixel type. Then two
counters are used to get the total number of pixels for each
pixel type. The output of counter 1, the number of uniform
pixels, while the output of counter 2, the number of edge
pixels. The block classification stage is initial
counter values are available.

Adaptive Thresholding

Adaptive threshold estimator calculates the threshold for each
block. High threshold is given as 1-P1 and low threshold is
40% of high threshold. It selects threshold value according to
the type of block. Block type is used as select line for
multiplexer.P1 is percentage of edge pixels in block.

 1002 Poonam S. Deokar and Anagha P. Khedkar,

Output of this comparator is used to calculate the Gradient
magnitude. It calculates approximate root value. FPGA
hardware requires multiplier, comparator to calculate the

16 * max(Gx,Gy) + 0.4* min(Gx,Gy).

The formula for finding the edge direction is given below:

Horizontal and vertical gradient magnitudes are fetched from

It computes gradient direction at each pixel. Gradient
magnitudes of gradient magnitudes of four nearest neighbors
along the direction are selected to compute two intermediate
gradients. Gradient magnitudes of four nearest neighbors along

selected to compute two intermediate
gradients. The final gradient magnitude after directional NMS

(x, y) is stored back into local memory
and used as the input for the hysteresis thresholding unit.

ication unit divides image into different blocks
such as smooth, edge/texture, uniform, strong edge and
medium edge block. It consists of two parts: 1) pixel classifier,
2) block classifier. Input to block classification unit is image

ication, the local variance of each pixel is
utilized and the variance is calculated as follows:

The pixels in the 3×3 windows are fetched from the local
memory and stored in one FIFO buffer to compute the local
variance. Then, the local variance is compared with Tu and Te

Tu =Upper Threshold, Te=Lower
termine pixel type. Then two

counters are used to get the total number of pixels for each
pixel type. The output of counter 1, the number of uniform

the number of edge
pixels. The block classification stage is initialized once the

Adaptive threshold estimator calculates the threshold for each
P1 and low threshold is

40% of high threshold. It selects threshold value according to
the type of block. Block type is used as select line for
multiplexer.P1 is percentage of edge pixels in block.

Thresholding with Hysteresis

Strong edges are interpreted as “certain edges”, and can
immediately be included in the final edge image. Weak edge
are included if and only if they are connected to strong edges.
Hysteresis is basically a procedure of comparing the value of
the pixel at hand with the values of three neighboring pixels
above it and the one directly on the left. If the pixel is a
possible edge and one of the aforementioned neighboring
pixels is a definite edge, then the pixel becomes a definite
edge. Otherwise it is left as is.

RESULTS

Experimental results include the testing on images on
MATLAB to select the proper operator for gradi
calculation. Proposed algorithm is tested on FPGA Platform
Virtex-4 is used.

Fig. 6. Lena image output with different operator

Fig. 7. Cameraman image output with different operator

Prewitt

Sobel

Prewitt

Sobel

and Anagha P. Khedkar, Implementation of modified distributed canny edge detector Algorithm using FPGA

Thresholding with Hysteresis

Strong edges are interpreted as “certain edges”, and can
immediately be included in the final edge image. Weak edges
are included if and only if they are connected to strong edges.
Hysteresis is basically a procedure of comparing the value of
the pixel at hand with the values of three neighboring pixels
above it and the one directly on the left. If the pixel is a

ble edge and one of the aforementioned neighboring
pixels is a definite edge, then the pixel becomes a definite

Experimental results include the testing on images on
MATLAB to select the proper operator for gradient
calculation. Proposed algorithm is tested on FPGA Platform

Fig. 6. Lena image output with different operator

Cameraman image output with different operator

Laplacian

Robert

Laplacian

Robert

Implementation of modified distributed canny edge detector Algorithm using FPGA

MATLAB RESULTS

Different operators like Prewitt, Robert, Sobel, and Laplacian
are applied on the Lena and Cameraman images to check the
performance. Simulation Results shows the performance of
Sobel operator is better, hence it is selected for gradient
calculation.

FPGA Implementation Results

Table shows the resource utilization summary for gradient
calculation. Present Canny algorithm uses FIR Filter IP for the
calculation of gradient, proposed canny algorithm
implementation uses the approximate gradient calculation. So,
it is observed that resource utilization is reduced by almost
30%, ultimately cost of the design is also reduced.

Table 1. Resource Utilization Summary

Logic
Utilization

Using
IP Core

Discrete
Implementation

Optim
ization

%
Optimization

Number of
Slice Flip Flops

317 230 87 27

Number of
occupied Slices

268 183 85 32

4 input LUTs 217 147 70 32

Image Results

Fig.8: a) Original Image b) Canny Edge Output Image

c) Proposed Algorithm Output Image

Conclusion

In this paper, modified distributed canny algorithm with the
approximate calculation of the gradient is presented. This
proposed method is implemented and tested on FPGA
platform.

Test images are taken from standard database. It is observed
that algorithm has better edge detection performance with
reduced latency. As system involves approximate calculation it
increases speed of operation, also hardware required for the
calculation is also optimized. It reduces computation cost as
compared to original edge detection algorithm. The extension
of this work is the effective use of GA for better optimization
of resources yielding the cost efficient distributed canny edge
detector.

REFERENCES

Christos Gentsos, Calliope- LouisaSotiropoulou and Spiridon
Nikolaidis Nikolaos Vassiliadis ,“Real- Time Canny
Edge Detection Parallel Implementation for FPGAs”
978- 1-4244-8 157 -6/ 1 0/$26.00 ©2010 IEEEICECS 20
10 499-502.

QianXu, Lina J. Karam,“A Distributed Canny Edge Detector:
Algorithm and FPGA Implementation”, IEEE
Transactions on Image Processing DOI
10.1109/TIP.2014.2311656.

Wenhao He and KuiYuan, 2008. “An Improved Canny Edge
Detector and its Realization on FPGA” Proceedings of
the 7th World Congress on Intelligent Control and
Automation June 25 - 27, Chongqing, China.

Christos Gentsos, 2010. Calliope- LouisaSotiropoulou and
Spiridon Nikolaidis Nikolaos Vassiliadis “Real- Time
Canny Edge Detection Parallel Implementation for
FPGAs” 978- 1-4244-8 157 -6/ 1 0 ©20 10 IEEEICECS
499-502.

“Canny Edge Detection”, 09gr820, March ,2009.
Caixia Deng, Weifeng Ma, Yin Yin ,“ An Edge Detection

Approach of Image Fusion Based on Improved Sobel
Operator”, 2011 4th International Congress on Image and
Signal Processing.

Li song and Kang He, 2013 “Parallel Hough Transform-Based
Straight Line Detection and Its FPGA Implementation in
Embedded Vision”,Sensor,13,9223-9247.

Shashidhar Ram Joshi, Roshan Koju, “Study and Comparison
of Edge Detection Algorithm”, 978-1-4673-2590-
5/12©2012 IEEE.

Anagha Parag Khedkar and Dr. Shaila Subbaraman, April
2009. “Novel Approach of Varying Mutation Probability
in Genetic Algorithm”, Int. J. Systemics, Cybernetics and
Informatics, Hyderabad, India, pp. 65-68.

Anagha Parag Khedkar and Dr. Shaila Subbaraman, March
2010. “Novel operator for Genetic Algorithm”, Proc. of
3rd International conference on Data Management:
Innovations and Advances in Computer Science and
Engineering, Gaziabad IMT, pp. 111-117.

Anagha Parag Khedkar and Dr. Shaila Subbaraman, 2010.
“Effect of Advanced Novel Operator on the Performance
of Genetic Algorithm”, International Journal of
Engineering Research & Technology IJERT, vol. 3, pp.
721-731.

 1003 International Journal of Information Research and Review Vol. 2, Issue, 08, pp.999-1003, August, 2015

