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In this paper, we using Kannan type and Chatterjea contractions and obtained some random 
fixed point results for multi-valued contractive conditions in the complete metric spaces. Our 
results generalize and improve some main results in the literature and references therein. 
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INTRODUCTION 
 
 

 
 

 

Random fixed point theory is playing an increasing role  in  mathematics and applied  sciences.   At present,  it  received  
considerable  attention due  to  enormous application in many important areas such as nonlinear  analysis,  probability 
theory and the study  of random  equations  arising in various applied  areas.  Random  fixed point theorems  for  random  
contraction mappings  on  separable  complete  metric spaces  were first  proved  by  Spacek  [Spajcek, 1955] and  Hans    
(Hans, 1961, Hans, 1957). The survey article by Bharucha-Reid [Bharucha-Reid, 1976] in 1976 attracted the attention of 
several mathematician and gave wings to this theory.   Itoh [Itoh, 1979] extended Spacek’s result and Hans’s theorem to 
multivalued contraction mappings.    In an attempt to construct iterations for finding fixed points of random operators 
defined on linear spaces.   This  iteration and  some other  random  iterations based  on the  same ideas have been applied  
for finding solutions  of random  operators. 
 

 
Definitions 
 

Throughout this paper, let (Ω, Σ) be a measurable space and X an arbitrary metric space.  We denote by 2x, and B(X) the 

family of all nonempty subset of X, the duality space of X, the family of all nonempty subset of X . Throughout this  

paper,  let  (Ω, Σ)  be  a  measurable space  and  X  is a  metric space  with  metric  d.   Let  2X  denote  a collection  of all 
nonempty subsets  of X , B(X ) a collection of all nonempty closed subsets of X , and H the Hausdorff metric on B(X ), i.e., 

H (A, B) = max{sup ξ(ω)∈A d(ξ(ω), B),    sup η(ω),∈B d(η(ω), A)}, A, B ∈ B(X ).  
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An element ξ(ω) ∈ X is said to be a fixed point of a multivalued map T : Ω × X →X  → 2X  if ξ(ω) → T (ω, ξ(ω)).  A 

multivalued map T: Ω × X → B(X) is said to be a contraction if for a fixed constant h ∈ (0, 1) and for each ω ∈ Ω,  
 

H (T (ω, ξ (ω), T (ω, η (ω))) ≤ hd (ξ (ω), η(ω)). 
 

Definition 2.1.   A mapping ξ: Ω → X is said to be measurable if for each B ∈  

 

B(X ), {ω : ξ(ω) ∈ B} ∈ Σ. 
 

Definition 2.2.  A mapping T: Ω × X → X is called a random operator if for each 
 

ω ∈ Ω, T (ω, ξ(ω)) = ξ(ω) is measurable. 
 

Definition 2.3.   A multi-valued mapping T: Ω → 2X is said to be measurable if  
 

for any B ∈ B (X ), T 1 (B) = {ω ∈ Ω : T (ω) ∩ B = φ} ∈ Σ. 
 

Definition 2.4.   A mapping T: Ω → 2X is called a random  multi-valued  mapping  
 

if for each ω ∈ Ω, T (., ω) : Ω → 2X  is measurable. 
 
A mapping T of X into itself is called a contraction if there exists a positive real number α < 1 with the property 
 

d (T x, T y) ≤ αd(x, y)                                                                                                                         (2.1) 
 

for all x, y ∈ X .  On the  other  hand  Kanan  [Kannan, 1969] proved  that If T is self mapping  of a complete  metric  space 
X  into itself satisfying: 
 

d(T x, T y) ≤ η[d(x, T x) + d(y, T y)] 
 

for all x, y ∈ X ; where η ∈ [0, 1/2].  Then T has unique fixed point in X. Moreover, Fisher [Hans, 1957] proved the result with 
 

d(T x, T y) ≤ µ[d(x, T x) + d(y, T y)] + δd(x, y) 
 

for all x, y ∈ X ; where  µ, δ ∈ [0, 1/2].   Then T has unique fixed point in X .  A similar conclusion was also obtained by 
Chaterjee [Chatterjee, 1972] proved the result with 
 

d(T x, T y) ≤ µ[d(x, T y) + d(y, T x)] 
 

for all x, y ∈ X ; where µ ∈ [0, 1/2].  Then  T has unique fixed point in X . 
 

RESULTS 
 
Theorem 3.1.   Let X be a complete metric space.  Let T: Ω × X → C B(X) be a continuous random multivalued operator. If 
there  exist measurable  mappings  α(ω), β(ω), γ(ω), δ(ω) in (0, 1) with α(ω) + β(ω) + γ(ω) + δ(ω) < 1 satisfying  
following condition: 
 

                                                                 (3.1) 
 

 
For each ω ∈ Ω, for all distinct x, y ∈ X.  Then T has a fixed point. 
 
Proof.  Let  xin+1 T xn ,  then  there  exists  xn+2  ∈  T xn+1  an  arbitrary  measurable mapping and choose a measurable 

mapping ξ1  : Ω → X such that ξ0 (ω) ∈ T (ω, ξ1 (ω)) for each ω ∈ Ω. In this way we define a sequence {ξn (ω)} for each ω ∈ 
Ω then from 
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(3.1), we have 
 

 
 
which implies that 
 

                                                                                                                          (3.2) 

 
 

 

                                                                                                                                            (3.3) 
 
Now, from (3.2) and (3.3), we have 
 

 
 

Using  induction, we obtain  a sequence  ξ(ω)  ∈  T (ω, ξ2n1 (ω))  ⊂ B,  ξ2n+1 (ω)  ∈ T ξ(ω) ⊂ A, and 
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Similarly, 
 

 
 

In general, we get 
 

 
 

 
Thus  This implies that      and   Therefore both 
sequences {ξ2n } and  {ξ2n+1 } are  bounded,  then  the  {ξ2n } and  {ξ2n+1 } have  subsequences  converging  to  some 
element ξ(ω).  Furthermore 

 

Therefore dξ(ω), ξ2nk 1 )  → 0.   Since  d(0  ≤ d(ξ2n , T (ω, ξ(ω))  ≤ d(ξ2n1 , ξ(ω)), we have  d(ξ(ω), T (ω, ξ(ω))  = 

0, hence  ξ(ω) is a random  fixed point  of T .   This completes the proof.  

 
Theorem 3.2.   Let X be a complete metric space.   Let T: Ω × X → C B(X) be a continuous random multivalued 
operator. If there  exist measurable  mappings  α1 , α2 , α3 , β1 , β2 , β3  and β4  in (0, 1) such that 
 

                                                           
(3.4) 
 
for all distinct  x, y ∈ X , ωΩ, where α1 , α2 , α3 , β1 , β2 , β3  and  β4  ∈ R+ , α1 (ω) + 
β1 (ω) + β2 (ω) + β4 (ω) > 0.  Then  T has a fixed point. 

 

Proof. Let ξ0: Ω → X  be an arbitrary measurable mapping  and  choose a mea- surable  mapping  ξ1  : 

Ω → X  such that ξ0 (ω) ∈ T (ω, ξ1 (ω)) for each ω ∈ Ω. In this way we define a sequence {ξn (ω)} for 
each ω ∈ Ω as follows: 
 

                                                                                                   (3.5) 
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Now consider 
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which implies that 
 
 

                                                                                       (3.6) 
 

Now we shall prove that for each ω ∈ Ω , {ξn (ω)} is a Cauchy  sequence.  For this for every positive  integer  p, 
we have 
 

 
which tends  to zero as n → ∞.  It follows that {ξn (ω)} is a Cauchy  sequence and there exists a measurable 
mapping  ξ : Ω : X such that ξn (ω) ∈ ξ(ω) for each ω ∈ Ω.  
 
Existence of random fixed point:  Since T is a surjective self map,  so there exist a function  g : Ω → X  X 
such that 
 

                                                                                                                                                        (3.7) 
 

Now 
 

 

                         
 

Since {ξn+1 (ω)} is a subsequence of {ξn (ω)}, so {ξn (ω)} → {ξ(ω)} ⇒ {ξn+1 (ω)} → 
{ξ(ω)}, when n → ∞. 
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q

q

 

 

as β2 (ω) + β4 (ω) > 0. It follows that 
 

                                                                                                                                             (3.8) 
 

The fact (3.8) along with (3.7) shows that ξ(ω) . This completes the proof. 

 
Theorem 3.3.   Let X be a complete metric  spaces.  Let T: Ω × X → C B(X) be a continuous random   multivalued operator 
 

                                                                                                    (3.9) 

 

for   each  x, y ∈  X ,  ωΩ and  q > 1.   Here   H represents the Hausdroff metric on C B(X ) induced  by the metric  d.  Then T 

has a fixed point. 
 
Proof.  Let a sequence ξn (ω) as in proof of theorem   3.2.  We claim that the inequality (3.9) for x = ξn+1 (ω) and                
y = ξn+2 (ω) we have 
 

 
Case I. If d(ξn (ω)ξn+1 (ω)) ≥ qd(ξn (ω), ξn+1 (ω)) ⇒ 1 ≥ q,which is contradiction. 
Case II.If d(ξn (ω)ξn+1 (ω)) ≥ qd(ξn+1 (ω), ξn+2 (ω)) ⇒ d(ξn+1 (ω), ξn+2 (ω)) ≤ 1 d(ξn (ω)ξn+1 (ω)) ⇒ 

d(ξn+1 (ω), ξn+2 (ω)) ≤ kd(ξn (ω)ξn+1 (ω)), where k = 1  < 1, since q > 1. So, in gen-eral 
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for all n = 1, 2, 3, dots. 
 

                                                                                                                   (3.10) 
 

We can prove that for each ω ∈ Ω, so {ξn (ω)} is a Cauchy  sequence using (3.10) as proved in theorem  3.3 

and since X is a complete space, so there exists a measurable mapping  ξ : Ω → X  such that {ξn (ω)} → 

ξ(ω) for each ω ∈ Ω. 
Existence of random fixed point:  Since T is a surjective self map, so there exist a function g: Ω → X X such that

                                                                                                                                 (3.11) 
Now 
 

 
Since {ξn+1 (ω)} is a subsequence of {ξn (ω)} , so {ξn (ω)} → {ξ(ω)} ⇒ {ξn+1 (ω)} →{ξ(ω)}, when n → ∞. 

 

 
 
Now, we conclude that 
 

                                                 (3.12) 
The fact (3.12) along with (3.11) shows that ξ(ω) is a fixed point of T. This completes the proof. 
 

Theorem 3.4.   Let X be a complete metric spaces.   Let T: Ω × X → C B(X) be a continuous random multivalued operator.  
If there exist measurable mappings 
 

a, b, c: Ω ∈ (0, 1) such that 
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                                                                  (3.13) 

for each x, y ∈ X , ωΩ, where a, b, c, ∈ R+ , b(ω) > 0 and  a(ω) + b(ω) + c(ω) > 1metric.  Then T has a fixed point. 

 
Proof. Let a sequence ξn (ω) as in proof of theorem 3.2. We claim that the inequality (3.13) for x = ξn+1 (ω) and y = 

ξn+2 (ω) we have 

 
 
Case I. If 
 

 
 
Case II. If 
 

 
 

where  Assume that  Hence, in inductively, 
we have 
 

 
 

It follows that 
 

                                                                                                                               (3.14) 

We can prove that for each ω ∈ Ω, so {ξn (ω)} is a Cauchy sequence using (3.14) as proved in theorem 3.2. Now 
since X  is a complete  space, so {ξn (ω)} → ξ(ω).  

 

Existence of random fixed point: Since T is a surjective self map, hence there exist a function g: Ω → X X 
such that 
 

                                                                                                                                                        (3.15) 
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We conclude that from (3.13), we obtain 

 

 
Since {ξn+1 (ω)} is a subsequence of {ξn (ω)}, so {ξn (ω)} → {ξ(ω)} ⇒ {ξn+1 (ω)} →{ξ(ω)}, when n → ∞.  We have 
 

 

 

                                                                         (3.16) 

The  fact  (3.16)  along  with  (3.15)  shows  that ξ(ω)  is a  fixed point  of T .   This completes  the proof. 
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