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ARTICLE INFO                                         ABSTRACT 
 

 
 

The motion of the asymmetric gyrostat consisting of an asymmetrical carrier and an axisymmetric 
rotor, rotating about a fixed point under the action of the gravitational force. If the rotor of the gyrostat 
is locked, it does not have any effect on the dynamic behavior of the gyrostat. For purposes of 
investigating the effect of the rotor on the motion of the gyrostat, Deprit’s canonical are introduced to 
establish the hamiltonian structure for this problem. Motion equations of the free gyrostat with small 
rotor asymmetry and small internal moment are obtained in Anoyer-Deprit variables. Control law for 
the internal moment is proposed that eliminates the possibility of the separatrix chaos. Numerical 
simulation shows the efficiency of the proposed control. When the coefficient of the gravitational 
torque is zero, the problem reduces to torque-free motion of the gyrostat. The torque-free motion of 
the asymmetrical gyrostat may then be described by a one-degree of freedom Hamiltonian system. In 
this paper we have studied the movement and stability of an asymmetric gyrostat in the phase plane. 
We have used linear stability analysis to determine the stability of equilibrium of the gyrostat. The 
number of equilibria changes as angular momentum is varied. 

 
Copyright © 2016,  Azem Hysa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

INTRODUCTION 
 
The problems of the dynamics of the rotational motion of a gyrostat are very important for numerous applications such as the 
dynamics of satellite gyrostat, spacecraft, aircraft, robotics and the like. The attitude motion of the rigid body and the gyrostat has 
been extensively studied over a long period. In recent years, chaotic motions of the rigid body and the gyrostat under various 
circumstances have attracted interest of many researchers. Both numerical and analytical methods have been employed. The earlier 
studies on the attitude motion of a gyrostat could be found in the papers by Volterra. Volterra solved analytically the ordinary 
differential equations describing the attitude motions of a gyrostat with constant angular momentum and under no external torques. 
Rumyantsev reviewed the non-linear motion stability of liquid-filled solid bodies using Lyapunov’s methods. When an inviscid, 
homogeneous, and incompressible liquid fills a cavity of the body completely and is subject to a body force derivable from a 
potential in irrotational motion, the ordinary differential equations of the liquid- filled body are identical to those of a solid body to 
which a rotating gyroscope is joined. If the rotor of the gyrostat is locked, it does not have any effect on the dynamic behavior of 
the gyrostat. For purposes of investigating the effect of the rotor on the motion of the gyrostat, Deprit’s canonical are introduced to 
establish the hamiltonian structure for this problem. The effect of the rotor on the global motion of the gyrostat is studied by 
numerical simulation in conjunction with the poincare map. Kinsey et al. focused upon the capture dynamics of the precession 
phase lock, a phenomenon that could prevent the successful despin of a dual-spin spacecraft by developing a control strategy that 
employed closed-loop feedback control of the motor torque when the system was near resonance. Or studied the non-linear 
dynamics of an asymmetrical gyrostat and provided a numerical scheme for computing multiple equilibrium solutions and 
determining their stability and bifurcation properties simultaneously for equations that did not necessarily possess a potential. Hall 
investigated the escape from gyrostat trap statesa and proposed a procedure based upon the global analysis of the rotational 
dynamics.  
 

EQUATION OF MOTION IN TERMS OF THE DEPRIT’S CANONICAL VARIABLES 
 

The motion of the asymmetric gyrostat consisting of an asymmetrical carrier and an axisymmetric rotor, rotating about a fixed 
point under the action of the gravitational force. 
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Consider a gyrostat, consiting af an asymmetrical carrier and an axisymmetric rotor (see Figure 1). The rotor rotates about a 
principal axis of the carrier. The Lagrangian of the system is: 
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where � = �� + ��, � = �� + ��, � = �� + �� and ��, ��, �� (� = 1,2) are the principal inertia moments of the carrier and the 
rotor, respectively; ωx, ωy and ωz  are the components of the angular velocity ���  of the system in the body-fixed reference frame 
(����), Ω� is the relative spin speed of the rotor with respect to the carrier about the Oz axis. Here assume that the bearing of the 
rotor is frictionless, so that the relative angular momentum �� = ��Ω� is a constant.  
 
The angels �, � dhe � are the Euler angels and ��, ��, �� are the coordinates of the mass center of the gyrostat in the body-fixed 

reference frame (����). In the terms of the Euler angles the angular velocity is ��� = �� + � + ��  and the component of the angular 
velocity may also be expressed in terms of the Euler angles. 
 

The angular momenta canonically conjugate to the velocities �, � dhe � are defined by  
 
 

 
Figure 1. The asymmetric gyrostat 
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and the Hamiltonian of the system is  
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where,�(�, �) = (���������� + ���������ψ + ������) is the potential energy due to the gravitational force. 
 
Consider two frames reference OXYZ and Oxyz. Let ON be the intersection of the plane OXY and Oxy. Then denote by � the angle 
XON, by � the angle NOx, and by � inclination of the plane Oxy on the plane OXY.  

 

 
 

Figure 2. The frame of reference Oxyz is located with spect to the intermediate plane ON’H by angles  
I and g, while the plane ON’H is located with respect to the frame of reference OXYZ by the angles h and I 
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Now take a plane going through O which cuts the plane Oxy along the line OH, and the plane OXY along the line ON’. Let h denote 
the angle XON’; g the angle N’OH; and l, the angle HOx. Also let I be the inclination of the plane ON’H on the plane OXY; and b, 
the inclination of the plane Oxy on the plane ON’H.  
 
The various angles just defined are represented in figure 2. The plan is to define a transformation (�, �, �,��, ��, ��) → 

(l,g,h,L,G,H)  of the phase space of the three moments ���, ��, ��� into the phase space of the three coordinates (l,g,h) and the 

three momenta (L,G,H).  
 
To this effect, first assume the relations 
 
 � = �����, � = �����                                                                                                                                                                     (6) 
 
Define the transformation of momenta by relations 
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Finally, suppose that the angles � , � and � � are determined by the angles �, � and b from the usual identities of spherical 
trigonometry applied to the spherical triangle N’HN.  
 
The Hamiltonian of the system in terms of Deprit’s variables is:        
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where   
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is the coefficient of the gravitational torque.  

 
STABILITY OF THE FREE ROTATION OF THE GYROSTAT  
 
When � = 0, the problem reduces to torque-free motion of the gyrostat, so the Hamiltonian of the free rotations. 
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is obtained from (10) by replacing � = 0. 
 
Three of the phase variables are ignorable, and therefore, as was done in a previous instance, replaced by dashes, namely: (a) H, so 
that the longitude h of the node of the invariable plane in fixed reference plane OXY is a constant; (b) g, so that norm G of the 
angular momentum is a constant; (c) h, so that the component H of G is a constant. Now that G and H are both constant, we have, 
in view (6), that the inclination I of the invariable plane on the fixed reference plane OXY is constant. Therefore, the invariable 
plane is fixed in space. Hence the direction of G is fixed in space and, since it has also a constant norm the vector G itself is fixed 
in space.  
 
The torque-free motion of the asymmetrical gyrostat may then be describe by a one-degree of freedom Hamiltonian system with the 
following equation of motion: 
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We use the linear stability analysis to find the stability of equilibria. So, the firs we have to solve the system of equations 
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to find the fixed points. The Hamiltonian (30) is a periodic function of l; thus the dynamically significant part of the phase plane 
(�, �) is limited to the rectangle defined by � ≤ � ≤ � and by inequality 0 ≤ � ≤ �.  
 
There are three kinds of equilibria described by equations (13) and (14). For � = 0, � we have the firs equilibrium: 
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The second equilibrium is for � = �/2 and � = 3�/2, so we have: 
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The third equilibrium is arbitrar, |�| = �.  
 
From the physical requirement that |�| ≤ �, we obtain the following conditions for the existence of the first equilibrium: 
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For the existence of the second equilibrium we have: 
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For the first equilibrium the fixed point is the point with coordinate (�, �) = �0, �
�

���
� �� and for the second equilibrium the fixed 

point is (�, �) = �
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�
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The Jacobian of the system in the fixed point of the first equilibrium is: 
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In general, the eigenvalues of a matrix A are given by the characteristic equation det	(� ��) = 	0, where I is the identity matrix. 
For a 2 × 2 matrix the solutions of the charasterictic equation are the eigenvalues 
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 in (22) we have 
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For � > � > �	and	|�| ≤ � we have � < 0, so the eigenvalues are real and have opposite signs; hence the fixed point  

�0, �
�

���
� �� is a saddle point, so the first equilibrium is unstable (saddle).  

 
For the second equilibrium we have  
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In this case, � = 0 and � = 0, so the second equilibrium is stable. The third equilibrium various the angular momentum. 
 

RESULTS AND CONCLUSIONS 
 
The stability of the first and the second equilibrium depends only on the parameters A, B, C. Computations were performed for a 
gyrostat with the principal moments of inertia A = 1.2, B = 0.9 and C = 0.45.  
 
Other parameters used are: the angular momentum hz=1.9, the Hamiltonian H0=55, L/G=0.4. Sabstituing this parameters into (12), 
we obtain G=11.3982. So the matrix ���

 is 
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The eigenvalues of this matrix are: ��,� ± 5.8036, so they are real and have opposite signs; hence the fixed point  
 

 
Figure 3. Isoenergetic curves in the phase plane (l,L) for the torque-free rotation  

of the gyrostat for  �� = �. � 
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Therefore the first equilibrium is unstable (saddle). For the second equilibrium we have 
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Figure 4. Isoenergetic curves in the phase plane (l,L) for the 

torque-free rotation of the gyrostat for �� = � 

 
Figure 5. Isoenergetic curves in the phase plane (l,L) for the torque-free  

rotation of the gyrostat for �� = �� 

 
Figure 6. Energy surface for hz=0 
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and the eigenvalues of this matrix are equal to zero.The results (using MATLAB) are plotted on phase plane (�, �) for the torque-
free rotation of the gyrostat. Figures 3, 4 and 5 show isoenergetic curves in the phase rectangle (l, L) of the torque-free rotation of 
the gyrostat for the different angular momentum. For the torque-free rotation of the gyrostat, there are two saddle points for the 
first equilibrium at � = 0 and � = �. Figures 3 and 4 show phase plane for small angular momentum, � = 1.9 and � = 9, 
respectively. Can we see that, Homoclinic and heteroclinic trajectories are presented. For small relative angular momentum �, that 
is, 0 < � ≤ (1 �/�)�, three equilibria coexist and same isoenergetic phase curves are simple closed curves around the 
equilibrium points.  
 
Thus this equilibrium is stable; the gyrostat “librates” in the plane Oxy. As angular momentum is increased we have a new situation 
(see figure 5). So the number of equilibria changes as angular momentum is varied.  

 
For � = 0, the Hamiltonian (12) become 
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Figure 6 show the Energy surface for the torque-free rotation of the gyrostat for hz=0.  
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