

International Journal of Information Research and Review Vol. 04, Issue, 01, pp.3586-3588, January, 2017

Research Article

WILCKODONTICS- A NOVEL PROCEDURE FOR RAPID ORTHODONTICS!

^{1,*}Dr. Grishmi Niswade and ²Dr. Deepti Gattani

¹MDS, Senior Lecturer Department of Periodontology, SwargiyaDadasahebKalmeghSmruti Dental College and Hospital, Nagpur

²MDS, HEAD of Department and Professor Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur

ARTICLE INFO

Received 17th October, 2016

Accepted 24th December, 2016

Published online January, 30th 2017

Received in revised form

20th November, 2016

Article History:

ABSTRACT

Recently, there has been a rise in the number of adult patients looking for orthodontic treatment with requirements regarding the duration of treatment and esthetics. Periodontal accelerated osteogenic orthodontics (PAOO) or Wilckodontics is a clinical procedure that combines selective alveolar corticotomy, particulate bone grafting, and the application of orthodontic forces. This procedure is theoretically based on the bone healing pattern known as the regional acceleratory phenomenon (RAP). PAOO results in an increase in alveolar bone width, shorter treatment time, increased post treatment stability, and decreased amount of apical root resorption

Keywords:

Wickodontics, Alveolar Bone, Regional Acceleratory Phenomenon, Corticotomy.

Copyright©2017, *Dr.Grishmi Niswade and Dr.Deepti Gattani.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The periodontium consists of the investing and supporting tissues of the tooth (gingiva, periodontal ligament, cementum and alveolar bone) (Carranza's clinical periodontology-9th ed). The alveolar wall is surrounded by the supporting bone with which it forms an anatomical unit. The supporting bone includes the buccal and oral cortical plates and the septa. After the eruption period, the relationship between the teeth and their supporting structures remains dynamic, as the former migrate spontaneously within the alveolar process. This implies adaptation mechanisms preserving the anchorage to bone and the integrity of the periodontal ligament, which is a source of progenitor cells renewing the tissues (Jean-Louis Saffar, 1997). An increasing number of adult patients are seeking orthodontic treatment (Mathews, 1997). These patients have different requirements regarding duration of treatment, concerns regarding facial and dental aesthetics, and types of appliance that can be used. Growth is an almost insignificant factor in adults compared to children, and there is increasing chance that hyalinization will occur during treatment.

Corresponding author: Dr. Grishmi Niswade,

MDS, Senior Lecturer Department of Periodontology, SwargiyaDadasahebKalmeghSmruti Dental College and Hospital, Nagpur.

Also, cell mobilization and conversion of collagen fibers is much slower in adults than in children. Finally, adult patients are more prone to periodontal complications since their teeth are confined in non-flexible alveolar bone (Ong, 2002). The introduction of corticotomy-assisted orthodontic treatment (CAOT) opened doors and offered solutions to many limitations in the orthodontic treatment of adults. The new technique described here provides an increased net alveolar volume after orthodontic treatment. This is called the periodontally accelerated osteogenic orthodontics (PAOO) technique. It is a combination of a selective decortications facilitated orthodontic technique and alveolar augmentation (Wilcko, 2001). This procedure has several advantages such as reduced treatment time, enhanced expansion, differential tooth movement, increased traction of impacted teeth and an increased post orthodontic stability. With the help of this technique teeth can be moved 2 to 3 times further in 1/3rd to 1/4th the time required for traditional orthodontic therapy (5).

Principle of PAOO

One of the main disadvantages of conventional orthodontic treatment is time, requiring more than 1 year for completion. There are three options to shorten the time of treatment: (i) local administration of chemical substances, (ii) physical stimulation (*i.e.*, electrical current or magnets), and (iii) surgery

(i.e., alveolar corticotomy, compression, or distraction). This technique of Wilckodontics involves the removal of a portion of cortical bone just enough to initiate a local response known as the Regional acceleratory phenomenon (RAP) and should not create movable alveolar segments. Orthopedist Harold Frost recognized that surgical wounding of osseous hard tissue results in striking reorganizing activity adjacent to the site of injury in the surgical procedure. He collectively termed this cascade of physiologic healing events the Regional Acceleratory Phenomenon (RAP) (Frost, 1989; Frost, 1989). Following surgical wounding of cortical bone, RAP potentiates tissue reorganization and healing by way of a transient burst of localized hard and soft tissue remodelling (Shih, 1985). This is an intensified bone response (increased osteoclastic and osteoblastic activity, and increased levels of local and systemic inflammation markers) in areas around cuts that extend to the marrow. The duration of RAP depends on the type of tissue, andusually lasts about 4 months in human bone. This phenomenon causes bone healing to occur 10-50 times faster than normal bone turnover (Schilling, 1998). Surgical injury causes transient osteopenia in alveolar bone (i.e., a temporal and reversible decrease in bone mineral density) (Oliveira et al., 2010). This reduces the biomechanical resistance and enables rapid tooth movement through trabecular bone. This phase of transient osteopenia can be prolonged with loading orthodontic application. This is why it is essential to adjust the orthodontic appliance every 2 weeks (Dibart et al., 2009).

Procedure

The surgical technique for PAOO consists of 5 steps viz. raising of flap, decortication, particulate grafting, closure and orthodontic force application. A proper flap design is essential for the success of any surgical procedure. In PAOO, the flap should provide proper access to the alveolar bone wherein corticotomies are to be performed. Decortication refers to the removal of the cortical portion of the alveolar bone. However, it should be just enough to initiate the RAP response and should not create movable bone segments. Vertical cortical scaring incisions are performed interproximallly, extending well beyond the dental apices. A sub apical horizontal osteotomy is done at 10 mm supra apical to the anterior teeth penetrating the buccal and lingual cortical plates and in the post medullary bone. This connects vertical incisions to facilitate what is characterised as "Bony Block concept" that results in a shorter treatment time (6-12 weeks). It is generally accepted that heavier forces must be applied in cases of "bone block" movement after corticotomy to move the tooth-bone block. Bone block movement after osteotomy creates a dynamic microenvironment similar to distraction osteogenesis, but does not show regional demineralization in medullary bone (Anholm et al., 1986).

DISCUSSION

The procedure of Wilckodontics is advantageous than the conventional orthodontic treatment as it takes lesser time to achieve the results. There is less evidence of root resorption and history of relapse. The dependency on orthodontic appliances such as headgear is also reduced (depending on the case). It has been claimed that orthodontic treatment progresses faster and the results are more stable after corticotomy with minimal risk of complications (Keole, 1959).

Corticotomy with subsequent bone augmentation has been proposed to increase the volume of the alveolar process, to facilitate arch development, to prevent or even treat fenestrations, and to maximize the metabolic response during orthodontic treatment (Wilcko, 2001). Corticotomy-facilitated orthodontics has been indicated for nonextraction treatment of crowding. shortening treatment duration. borderline patients, extrusion orthognathic surgerv of ankylosed teeth, intrusion of posterior teeth to close anterior open bites, faster canine retraction in extraction patients, and impacted canines (Eelke, 2014). Contraindications include patients with severe active periodontal disease, inadequately treated endodontic problems, patients on long term medications slow down bone metabolism, such as which will bisphosphonate and NSAIDs and patients on long term steroid therapy due to presence of devitalized areas of bone and patients with inadequate width of attached gingiva (Pan Chern Hwei, 2014). The effects of Alveolar corticotomies on the acceleration of tooth movement were documented in rats, dogs, cats and humans based on split mouth study designs. The outcome of these experiments show that the rate of tooth movement is doubled on the corticotomy treated site (about 1mm/month) (Sirisha, 2014). Generson et al described rapid orthodontic treatment for open bite malocclusion in 1978 using alveolar decortication without subapical osteotomy [Generson et al., 1978]. This modified surgical procedure was reported in 1991 and was referred to as corticotomyfaciliated orthodontics [Suya, 1991]. In 1991, Suya reported surgical orthodontic treatment of 395 adult japanese patients with an improved surgical procedure that he referred to as corticotomy facilitated orthodontics. Suya's surgical technique differed from Kole's with the substitution of supraapical corticoomy cut in place of horizontal osteotomy cut beyond the apices of the teeth. Suya contrasted this technique with conventional orthodontics. This technique was found to be less painful, producing less root resorption and relapse. He recommended completing the major active tooth movements in 3-4 months (Suya, 1991). In 1986, Anholm et al reported treatment of severe malocclusion using corticotomy facilitated orthodontics (Anholm et al., 1986).

Kanno*et al* described a corticotomy procedure used to treat a case of severe open bite, moving the upper posterior bone–tooth segments 7 mm in a superior position. They used anchor plates and elastics three weeks after surgical intervention in two stages. Satisfactory results were obtained after 6 months of orthodontic treatment (Kanno *et al.*, 2007). Dibart *et al* described a tunnel approach with piezoelectric bone cuts. Several vertical incisions are distributed on the attached gingiva through piezo-electric vertical corticotomies. The tunneling approach allows placement of the bone graft. A case of mild crowding was solved within 17 weeks of active treatment with this approach (Dibart *et al.*, 2009).

Studies (Sanjideh *et al.*, 2010) comparing the rate of tooth movement showed that the tooth movement peaked at 22-25 days and then decelerated.During this three week period, corticotomy facilitated side moved twice than the control side. Similar results were obtained in a study (Aboul-Ela *et al.*, 2011) conducted in adults to retract maxillary canines following premolar extractions. Based on the outcome of these studies the length of RAP was probably four months, after which the rate of tooth movement returns to normal.

Studies have shown that corticotomy shortens the treatment time. However, one cannot measure treatment time without measuring treatment quality. The American Board of orthodontics has developed a detailed grading system to assess the quality of orthodontic treatment (Casko et al., 1998). Yet to date there are no RCT's focusing on this aspect of corticotomy. In support of wilcko's concept, published data (Wilcko et al., 2009) claims that bone grafting enhances the stability of orthodontic treatment results. Some cases report a greater volume of bone in Computed tomographic Scans. However is the new bone incorporated into native cortical -plate, or is it fibroosseous material encapsulated on the outside of the cortical plate was evaluated. The scans suggest that it is a fibroosseous encapsulation (Wilcko et al., 2009). Moreover a distinct disadvantage of this procedure is the additional cost, invasive nature and morbidity associated with the surgery (Murphy et al., 2009).

Conclusion

The procedure of Wilckodontics has made adult orthodontics a reality. The treatment can be accomplished within a shorter period of time which is attributable to the Regional Acceleratory Phenomenon (RAP). The use of this procedure avoids secondary effects of conventional orthodontic treatment such as root resorption or periodontal dehiscence. This technique also shows increased alveolar thickness due to the inclusion of bone grafts, better post orthodontic stability and less incidence of root resorption when compared to conventional orthodontic treatment. As Wilckodontics is a relatively newer procedure long term follow up studies with increased sample size are required to further authenticate this procedure into surgical orthodontics.

REFERENCES

- Aboul-Ela, S.M., El-Beialy, A.R., El-Sayed, K.M., Selim, E.M., El-Mangoury, N.H., Mostafa, Y.A.2011. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitatedorthodontics. *Am J Orthod Dentofacial Orthop.* 139: 252-9.
- Anholm, L., Crites, D., Hoff, R., Rathbun, E. 1986. Corticotomy – facilitated Orthodontics. *Calif Dent Assoc J.* 7: 8-11.
- Anholm, L., Crites, D., Hoff, R., Rathbun, E. 1986. Corticotomy – facilitated Orthodontics. *Calif Dent Assoc J.* 7: 8-11.
- Carranza's clinical periodontology-9th ed. [edited by] Michael G. Newman, Henry H. Takei, Fermin A. Carranza.
- Casko, J., Vaden, J., Kokich, V. 1998. American Board of Orthodonticsobjective grading system for dental casts and panoramic radiographs. *Am J Orthod Dentofacial Orthop.*, 114: 589-99.
- Dibart, S., Sebaoun, J.D., Surmenian, J. 2009. Piezocision: a minimally inva14. sive, periodontally accelerated orthodontic tooth movement procedure. *Compend Contin Educ Dent.*, 30:342–50.
- Dibart, S., Sebaoun, J.D., Surmenian, J. 2009.Piezocision: a minimally invasive, periodontally accelerated orthodontic tooth movement procedure. *CompendContinEduc Dent.*, 30: 342–50.
- Eelke, J. 2014. Hoogeveen *et al.* Surgically facilitated orthodontic treatment: A systematic review. *Am J Orthod Dentofacial Orthop.*,145:S51-64.

- Frost, H.M. 1989. The biology of fracture healing: An overview for clinicians. *Part I. Clin Orthop Rel Res.*, 248:283–293.
- Frost, H.M. 1989. The biology of fracture healing:An overview for clinicians. Part II. *ClinOrthopRel Res.*, 248:294–309.
- Generson, R.M., Porter, J.M., Stratigos, G.T. 1978. Combined surgical and orthodontic management of anterior open bite using corticotomy. *J Oral Surg.*, 36: 216–9.
- JEAN-LOUIS SAFFAR *et al.* Alveolar bone and the alveolar process:the socket that is never stable. *Periodontology* 2000, Vol. 13, 1997, 76-90
- Kanno, T., Mitsugi, M., Furuki, Y., Kozato, S., Ayasaka, N., Mori, H. 2007. Corticotomy and compression osteogenesis in the posterior maxilla for treating severe anterior open bite. *Int J Oral Maxillofac Surg.*, 36: 354-7.
- Keole, H. 1959. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol, 12:515-29.
- Mathews DP, Kokich VG. Managing treatment for the orthodontic 1. patient with periodontal problems. *SeminOrthod*. 1997;3:21-38.
- Murphy, K.G., Wilcko, M.T., Wilcko, W.M., Ferguson, D.J. 2009. Periodontalaccelerated osteogenic orthodontics: a description of the surgicaltechnique. J Oral Maxillofac Surg. 67: 2160-6.
- Oliveira, D.D., Franco, B., Villamarin, R. 2010. Alveolar corticotomies in or13. thodontics: indications and effects on tooth movement. *Dent Press J Orthod.*,15:144–57.
- Ong MM, Wang HL. Periodontic and orthodontic treatment in 2. adults. *Am J OrthodDentofacialOrthop*. 2002;122:420-8.
- Pan Chern Hwei *et al.* 2014. Role of periodontal therapy in Rapid tooth movement. IOSR Journal of Dental and Medical Sciences, Volume 13, Issue 2 Ver. II. (Feb), PP 62-65
- Sanjideh, P.A., Rossouw, P.E., Campbell, P.M., Opperman, L.A., Buschang, P.H. 2010. Tooth movements in foxhounds after one ortwo alveolar corticotomies. *Eur J Orthod.* 32: 106-13.
- Schilling, T., Müller, M., Minne, H.W., Ziegler, R. 1998. Influence of inflammation-mediated osteopenia on the regional acceleratory phenomenon and the systemic acceleratory phenomenon during healing of a bone defect in the rat. *Calcif Tissue Int.* 63: 160–6.
- Shih, M.S., Norrdin, R.W. 1985. Regional acceleration of remodeling during healing of bone defects in beagles of various ages. *Bone.*, 5:377–379.
- Sirisha, K. *et al.* 2014. Wickodontics- anovel synergy to save time. Journal of Clinical and Diagnostic Research. Jan, Vol-8(1): 322-325
- Suya, H. 1991. Corticotomy in orthodontics. In Hosl E, Baldauf A (eds), Mechanical and biological basis in orthodontic therapy. Germany: Huthig Buch Verlag; 207-26.
- Wilcko, M.T., Wilcko, W.M., Pulver, J.J., Bissada, N.F., Bouquot, J.E. 2009. Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. *J Oral Maxillofac Surg.*, 67: 2149-59.
- Wilcko, W.M., Wilcko, M.T., Bouquot, J.E. 2001. Rapid orthodontics with 3. alveolar reshaping: two case reports of decrowding. *Int J Periodontics Restorative Dent.*, 21:9-19.